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SUMMARY

This work concerns finite element analysis for a class of generalized Newtonian flows through branching
pipe or tube junctions in industrial applications or blood flow through arterial branches, prosthetic tube
implants or in biomedical engineering devices. A two-step morphing transformation is developed and
implemented to map a generic coplanar 3D branching flow configuration to general out-of-plane deformed
geometry including local constriction/dilation ‘defects’ suitable for modeling specific arterial flow and
industrial flow applications. Unstructured 3D meshes may be generated in the reference configuration
and morphed to the application configuration. The resulting meshes may be tangled and exhibit mesh
quality degradation. Algorithms integrating mesh generation, morphing, untangling and cell shape control
strategies are presented.

Phenomenological studies are conducted with the Powell–Eyring class as a representative model to
determine local details of shear-thinning flow behavior as well as the nature and location of high shear
stress regions on artery branch walls. The supporting simulations are carried out using a parallel finite
element scheme with domain decomposition by a sectional partitioning that takes advantage of the medial
curve shape and specialized ILU preconditioning. Copyright q 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

There are numerous industrial applications that involve flow of Newtonian and non-Newtonian
fluids through curved pipes, branching pipes and pipe networks where the flow behavior may be
quite complex and high-resolution computations are warranted for reliable simulations. Analogous
problems arise in biomedical applications such as modeling blood flow through branching arteries
in the brain or cardiovascular system, and in prosthetic tube implants or other biofluidics or
bioengineered support systems (see, e.g. [1–4]).

Biomedical applications involving living tissue are generally more complex because of patient-
specific features, more complex biofluid rheology, the nature of tissue materials and uncertainty
in properties and flow conditions. Here we focus on aspects concerning non-linear fluid models,
geometry and mesh improvement, since the flow may be complex and the branching networks are
more irregular, very out of plane and subject to strong local variations. Moreover, patient-specific
modeling may be practically achieved by mapping from a generic model [5] and this may degrade
numerical accuracy in the associated meshes unless mesh quality is controlled as seen later in this
study.

Reliable simulations of certain engineering and biofluid problem classes may require fluid
models of considerable complexity. For example, both industrial fluid suspensions and blood are
frequently modeled qualitatively as Newtonian fluids, but other generalized viscosity models and
more complex fluid models better characterize shear-thinning effects important in simulating near-
wall behavior. For example, wall shear stress effects and effects of chemical blood thinners for
stroke prevention are especially relevant in the context of the generalized viscosity models studied
here. These viscosity models include, for instance, the Powell–Eyring, Williamson and Carreau
fluids [6–8]. The Powell–Eyring model is taken as a representative example from this class in
later numerical experiments. The flow problem is then discretized using an LBB-stable velocity–
pressure finite element formulation for which optimal a priori estimates have been proven for
the steady Powell–Eyring analog of Stokes flow [9]. The discretized non-linear problem is solved
using a Newton scheme with Krylov subspace linear Jacobian system solves. The algorithm utilizes
a domain decomposition approach for parallel simulation on distributed multiprocessor systems
and is an extension of a scheme and software implementation for Navier–Stokes problems with
Newtonian fluids [10–13]. An element-by-element approach is applied on independent subdomains.
System preconditioning employs ‘occasional’ incomplete factorization of the Jacobian matrix, with
the frequency of incomplete factorization determined automatically by the algorithm.

A further point of numerical interest in this work is the difficulty of generating meshes with
well-shaped cells in regions where deformed branches intersect and the effect of such local
mesh irregularity on the flow solution. In the accompanying numerical experiments and flow
phenomenological studies, flow in coplanar branching pipes of constant cross section meeting at
120◦ is first considered as a generic ‘base’ configuration. This is used in baseline studies and then
as the reference domain for morphing transformations to more general out-of-plane configurations.
An unstructured, all-hexahedral mesh is generated using CUBIT [14] for the interior flow domain
by extrusion of section meshes. Each arm of the flow domain is divided into four sections which
divide the circular cross section into four quadrants. These sections are extruded from the flat,
circular end along the length of the cylinder to the center of the domain where the three arms meet
and are seamlessly joined. ‘Baseline’ flow solutions with different flow models are compared for
this ‘simple’ reference domain. Following this, ‘morphing’ transformation functions are constructed
to map the previous coplanar pipe geometry into more general shapes with out-of-plane deformed
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branches in 3D. This morphing approach is of general interest for branching pipe or tube flow
geometries and is a novel approach for addressing problems related to meshing patient-specific data.
This is illustrated here by flow simulations of shear-thinning fluids in some representative morphed
geometries that are qualitatively based on part of a branched artery system in the human brain. As
a result of this extreme morphing, the previous well-shaped mesh for pipes with coplanar medial
axes is significantly deformed under the transformation, particularly in the branching subregion.
A mesh improvement algorithm is introduced to untangle any overlapping cells and also improve
general cell shape and size quality based on a recent quality metric formulation [15]. Variants of
the associated algorithm are presented in this context. The flow is then computed on the resulting
improved mesh. Both steady-state and pulsatile periodic flows are calculated and detailed flow
studies conducted to investigate details of flow complexity and wall shear stress behavior due to
shear-thinning effects near the branch region and local constrictions.

NON-NEWTONIAN FLOW MODEL

Incompressible laminar viscous flow of a generalized Newtonian fluid may be modeled by the
momentum and continuity equations

�u
�t

+u·∇u=∇ ·r, (x, t)∈�×[0, tf] (1)

∇ ·u=0 (2)

where � is the spatial domain, tf the final time of interest, u the unknown velocity vector, and r
the stress tensor.

The constitutive equation for the fluid stress has the form

r=−pI+2�D(u) (3)

where I is the identity tensor, � the (not necessarily constant) viscosity, and D(u) the strain rate
tensor given by

D(u)= 1
2 (∇u+(∇u)T) (4)

Here, a class of generalized viscosity models that includes the Powell–Eyring, Williamson and
Carreau models is considered. For certain choices of model parameters, these models reduce to
the linear Newtonian model as a special case. A comparison of several viscosity models would be
straightforward but is not the purpose of this work; hence, in the numerical simulations presented
later, the Powell–Eyring model is taken as a representative case and compared only with the linear
Newtonian fluid model.

The Powell–Eyring model is based on Eyring reaction rate theory which gives it a strong
thermodynamic underpinning [6, 7, 16, 17]. This theory treats viscous diffusion as a ‘rate process’
described by a sum of exponential decay terms at the molecular level which leads to an expansion
of the viscosity in terms of inverse hyperbolic sine functions. Retaining the first two terms in such
an expansion leads to the 3-parameter Powell–Eyring model

�(s)=�∞+(�0−�∞)
sinh−1 �s

�s
(5)
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Figure 1. Powell–Eyring model: (a) viscosity and (b) shear stress.

where for strain rate s, �0 is the limiting viscosity at zero strain rate, �∞ the limiting viscosity as
s→∞, and � a characteristic time. The strain rate is given by

s(u)=√
2D(u) :D(u) (6)

Dimensionless viscosity �(s)/�0 and shear stress magnitude, s�(s)/s0�0, are plotted in
Figures 1(a) and (b) versus strain rate, s/s0 for �=100 and five linearly spaced values of �∞/�0 in[0,1]. Note that the familiar linear Newtonian case corresponds to �(s)/�0=1. Comparison with
the simpler Newtonian model is informative because it is often chosen for modeling viscous flow
phenomena. Accuracy of this model becomes an issue here since shear-thinning and related wall
shear effects are important. Such modeling error issues and their effect relative to discretization
error have become a topic of increasing attention [18].
Remark
This shear-thinning fluid model has been suggested in the literature as a possible model for blood
flow [19, 20]. Moreover, the monotone properties of the constitutive relation allow optimal finite
element estimates to be proven and demonstrated for this fluid. This is generally true for the other
fluids mentioned here, the exception being the extended Williamson fluid, primarily due to the
behavior of the derivative of the stress at the origin shown by this fluid model [9, 13].

Initial and boundary conditions complete the specification of the mathematical problem. For
time-dependent problems, an initial divergence-free velocity field is specified

u(x,0)=g, x∈� (7)

On the solid walls of the domain � the usual no-slip and no-penetration conditions apply

u=0, (x, t)∈�D×[0, tf] (8)

where �D ⊂��.
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At the inflow and outflow boundaries (�p ⊂��) consider the following conditions:

(r(x, t) ·n̂) ·n̂=�p(x, t) (9)

u· ŝ1=0 (10)

u· ŝ2=0, (x, t)∈�p×[0, tf] (11)

where n̂ is the outward unit normal and ŝ1 and ŝ2 are unit tangent vectors to �p. The first condition
is a traction boundary condition and the latter two imply that there is no tangential flow at these
boundaries; that is, flow is normal to inflow and outflow boundaries.

If surface �p is perpendicular to the walls (as is the case in the branched geometries considered
in subsequent flow simulations), then Equations (10) and (11) correspond to requiring that the
flow be parallel to the walls at this boundary; otherwise they simply require the flow be normal
to �p. Equation (9) specifies the normal component of the surface traction force and is equivalent
to a pressure boundary condition when used in conjunction with Equations (10) and (11) [13, 21].
Without these two tangential flow constraints, a pressure boundary condition on a flat surface
is inconsistent with the underlying physics. Other outflow boundary conditions might also be
considered for such cases where the desire for an imposed pressure drop can be relaxed [22–24].

WEAK FORMULATION AND FINITE ELEMENT IMPLEMENTATION

A weak variational formulation and corresponding Galerkin finite element scheme are used in
subsequent numerical experiments. The associated weak formulation of the governing equations is
derived in the same weighted residual manner as for Newtonian fluids by multiplying Equations (1)
and (2) by appropriate velocity and pressure test functions, respectively, integrating over the
domain �, and applying Gauss divergence theorem to the viscous stress term. By introducing the
constitutive relations and setting velocity test functions to zero where essential conditions apply
on the stationary solid walls, the weighted residual statement reduces to:

Find (u, p)∈V×Q satisfying the essential boundary conditions, (8), (10), and (11), and such that∫
�

�

(
�u
�t

+u·∇u
)

·vdx

=
∫

�
p(∇ ·v)−2�D(u) :∇vdx+

∫
�p

(r·n̂) ·vds (12)

−
∫

�
q(∇·u)dx=0 (13)

for admissible test functions (v,q)∈V×Q. Note that the normal traction has been retained in the
boundary term arising from integration by parts.

The normal traction outflow boundary condition is applied by rewriting the boundary integral
in Equation (12) as follows:∫

�p

(r·n̂) ·vds=
∫

�p

(r·n̂) ·(vn̂n̂+vŝ1 ŝ1+vŝ2 ŝ2)ds (14)

Substituting Equations (9) and (14) into Equation (12) and setting vs1 =vs2 =0, since the tangential
velocity components are zero on �p, the weak statement is: Find (u, p)∈V×Q satisfying the
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essential boundary conditions, (8), (10), and (11), and such that
∫

�
�

(
�u
�t

+u·∇u
)

·vdx=
∫

�
p(∇ ·v)−2�D(u) :∇vdx+

∫
�p

�pvn̂ ds (15)

−
∫

�
q(∇·u)dx=0 (16)

for all admissible test functions (v,q)∈V×Q.
Following [21] the condition of no flow tangential to �p (Equations (10) and (11)) or, equiva-

lently, that the flow to be entirely normal to inflow/outflow boundary sections, is enforced via a
penalty approach as described next. The tangential velocity vector can be determined by subtracting
the resolved velocity vector in the normal direction to obtain [u−(u· n̂)n̂]. The corresponding
least-squares penalty functional on the boundary �p then is

I (u)= 1

2�

∫
�p

[u−(u·n̂)n̂]·[u−(u·n̂)n̂]ds (17)

where 0<��1 is the penalty parameter. Taking the first variation, and simplifying, the contribution
from the penalty functional is

I ′(u)(v) = 1

�

∫
�p

[u−(u·n̂)n̂]·[v−(v · n̂)n̂]ds

= 1

�

∫
�p

u·v−(u·n̂)(v ·n̂)ds (18)

Adding this penalty contribution to the previous variational statement in Equation (15), the penalized
problem implemented in subsequent numerical studies is:

Find (u, p)∈V×Q satisfying the essential boundary conditions, (8), (10), and (11), and such that
∫

�
�

(
�u
�t

+u·∇u
)

·vdx =
∫

�
p(∇ ·v)−2�D(u) :∇vdx

+
∫

�p

�pvn̂ ds+ 1

�

∫
�p

u·v−(u·n̂)(v ·n̂)ds (19)

−
∫

�
q(∇·u)dx=0 (20)

for all admissible test functions (v,q)∈V×Q.
In the flow studies that follow, Equations (19) and (20) are discretized using the familiar

continuous piecewise quadratic velocities and piecewise linear pressure bases for velocity and
pressure, respectively. The resulting semidiscrete ordinary differential equation system is integrated
in time using a second-order Adams–Bashforth/trapezoidal rule predictor–corrector method, and
the resulting non-linear system in each time step is iteratively solved to a specified tolerance using
Newton’s method. The linear system at each Newton step is solved with SILU(0) preconditioned,
element-by-element Bi-CGSTAB. The scheme is parallelized by partitioning elements into subdo-
mains that are distributed to individual processors. Parallel scalability is enhanced through the
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use of non-blocking communication in the matrix–vector product routines employed in the linear
solver. Further details of the numerical scheme can be found in [10–13, 21]. The methodology, flow
simulation algorithms, and main viscous flow computer code have been verified against simple test
problems with known analytic solutions and ‘manufactured’ solutions and against other numerical
and experimental work in the literature [13].

NON-NEWTONIAN FLOW STUDIES

Branched pipe flows: We first compute time-dependent solution to steady state (where one exists)
for pressure-driven flow in a branched pipe configuration. As there is no velocity scale in the
problem statement, �U 2=�� is used in the traditional definition of the Reynolds number to arrive
at a ‘pressure’ Reynolds number given by

Re= �UD

�0
= D

√
���

�0
(21)

where D is the pipe diameter and ��=|�in−�out| with �in and �out being the normal stress
imposed at the inflow and outflow boundaries, respectively.

This choice of non-dimensionalization leads to a formulation of the problem that is consistent
with the boundary conditions but where a change in the Reynolds number implies a change in the
fluid as well (all other parameters being fixed). An alternate manner of non-dimensionalization of
this problem is described in [21].

Figure 2 shows a diagram of the domain and boundary conditions used in the present simulation
studies for the branched pipe problem. Each pipe section has non-dimensional diameter 1 and
centerline length 5. The angle between the pipes is uniformly 120◦. The outer surface of the pipe
is a no-slip and no-penetration boundary. The single inflow section (on the right in the figure) has
a fixed normal component of the traction, (r̂·n̂) ·n̂=−1, and the no-tangential flow condition is
imposed. The two outflow sections of the boundary also have no-tangential flow with the normal
component of the traction set to zero. The figure is colored with initial surface pressure contours.
The initial velocity field is quiescent. The coplanar branched pipe geometry is meshed by dividing
each arm into four quadrants, meshing one of the quadrants, and then duplicating this mesh through

No Tangential Flow
No Normal Traction

No Tangential Flow
Fixed Normal Traction

No Slip/No Penetration

Figure 2. Branched pipe boundary condition diagram: color contours represent non-dimensional surface
pressure between 0 (blue) and 1 (red).
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translation and rotation throughout the remainder of the quadrants and the other arms. In the
present simulations this leads to a mesh of 23 040 elements using the CUBIT software [14] that
has ∼600000 degrees of freedom. This configuration is suitable for certain industrial applications
and for medical equipment and prosthetic flow device simulation studies. Later, this configuration
and mesh are morphed out of plane and the distorted mesh quality is improved by an optimization
strategy prior to arterial flow simulation studies.

Coplanar geometry

In Figure 3, for Re=10, contours of velocity magnitude, the viscous stress magnitude, and pres-
sure, are plotted for �∞/�0=1, 0.1, and 0.01, on mid-pipe cross sections. There are 25 contour

Figure 3. Effect of decreasing �∞/�0 at fixed Reynolds number, Re=10, Powell–Eyring fluid:
(a) velocity magnitude, �∞/�0=1; (b) viscous stress, �∞/�0=1; (c) pressure, �∞/�0=1; (d) velocity
magnitude, �∞/�0=0.1; (e) viscous stress, �∞/�0=0.1; (f) pressure, �∞/�0=0.1; (g) velocity magni-

tude, �∞/�0=0.01; (h) viscous stress, �∞/�0=0.01; and (i) pressure, �∞/�0=0.01.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:531–553
DOI: 10.1002/fld



NON-NEWTONIAN FLOW IN BRANCHED PIPES AND ARTERY MODELS 539

levels on each plot, and the scale runs from the minimum (blue) to the maximum (red) of each
quantity.

The contours of velocity magnitude clearly show that, as expected, the velocity profiles become
more ‘full’ as �∞/�0 decreases. This change has little effect on the pressure distribution, only
increasing it slightly adjacent to the stagnation point on the downstream wall at the branching
joint. However, the local viscous stress magnitude shows a somewhat different behavior in the
fully developed regions of the two ‘arms’ of the pipe network when compared with the Newtonian
case. All cases show a linear variation from the maximum at the pipe wall to zero at the pipe
centerline in the fully developed regions. In the Newtonian case, the stress at the pipe wall is
considerably lower in the two arms than in the single inflow section. This reflects the fact that the
flow rate and velocity magnitude in the outflow arms are half that of the inflow, and, therefore,
the stress at the walls is similarly reduced. However, in the non-Newtonian cases, the stress has
much larger magnitude in the fully developed region of the outflow arms in comparison with the
inflow section, even though the velocity and flow rate are similarly halved. This effect becomes
more pronounced as �∞/�0 is reduced and is due to the fuller profile shape in the downstream
regions caused by the increasing effect of shear thinning.

In Figures 4–6, contours of velocity magnitude, viscous stress, and pressure, respectively, are
plotted with �∞/�0=1 in (a), 0.1 in (b), 0.025 in (c), and 0.01 in (d) at Re=20. These figures
show the effect of increased convection in the problem. As �∞/�0 decreases, two recirculation
regions have begun to appear just downstream of the junction on the upstream wall of each of
the arms. This is due to the increasingly thin boundary layer, more plug-like flow in the interior,

Figure 4. Contours of velocity magnitude, Powell–Eyring fluid with Re=20 for different viscosity ratios:
(a) �∞/�0=1; (b) �∞/�0=0.1; (c) �∞/�0=0.025; and (d) �∞/�0=0.01.
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Figure 5. Contours of the magnitude of the viscous stress, Powell–Eyring fluid with Re=20 for different
viscosity ratios: (a) �∞/�0=1; (b) �∞/�0=0.1; (c) �∞/�0=0.025; and (d) �∞/�0=0.01.

Figure 6. Pressure contours, Powell–Eyring fluid with Re=20 for different viscosity ratios: (a) �∞/�0=1;
(b) �∞/�0=0.1; (c) �∞/�0=0.025; and (d) �∞/�0=0.01.
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Figure 7. Stream ribbons illustrate twisting flow for Re=20 and �∞/�0=0.01, Powell–Eyring fluid.

and higher maximum velocity. The adverse pressure gradient driving the recirculation flow can
be seen in Figure 6(c). When �∞/�0=0.01, the recirculation region is no longer a simple cell.
The flow instead is strongly pushed away from the stagnation point where the pressure is even
higher than at the inlet (see Figure 6(d)). Figure 7 shows, in detail, the local downstream effect of
the increased stagnation pressure. In this figure, stream ribbons are plotted above a mid-plane of
velocity magnitude contours. This close-up image shows that the flow above the mid-plane rises
sharply near the stagnation point toward the top of the branch where it then cuts dramatically
across toward the far wall. As it follows the curvature of the branch, flow turns down until it
reaches the mid-plane and meets its symmetric counterpart from the bottom half of the branch.
There a portion turns upstream, recirculates briefly, and turns back downstream near the branch
centerline. The other part twists and turns downstream following the upstream wall of the
branch. Now the flow is no longer completely laminar, and no fully developed region exists down-
stream of the bifurcation. This is a case where good, immersive, 3D visualization is required for a
full understanding of the structures in the flow. 2D section plots and single images of streamlines
do not effectively convey the nature of the flow.

Figure 5 shows locally high stresses in the neighborhood of the upstream junction of the branches
as well as just downstream of the stagnation point. These higher stresses are present where the
flow is turning most strongly, both at the first kink in the geometry encountered by the flow at the
upstream junction, and as the flow near the centerline impinges on the downstream wall of each
arm and is forced to turn parallel to it. It is also apparent in these figures that the complex flow
that prevails here in the arms for �∞/�0=0.01 leads to equally complex stress behavior. As there
is no fully developed flow region in this case, the linear profile in the viscous stress no longer
appears (see Figure 5(d)).

BRAIN ARTERY MODEL

The preceding discussion focused on branching pipe flows that may arise in traditional engineering
applications involving Newtonian or non-Newtonian fluids. The non-Newtonian fluid model is
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Figure 8. Two views of brain arteries (from http://www.neuropat.dote.hu/table/angio.htm).

a representative model that has been suggested as applicable for biofluids and the simulation
methodology could be directly applied to analysis and design of biomedical engineering equipment
for dialysis, heart assist, and other biomedical fluids uses. Our goal in the remainder of this paper
is to conduct studies that extend this methodology toward the problem of simulating flows and
drug delivery in arteries, more specifically in branching arteries. To facilitate this goal, morphing
transformations are introduced to demonstrate the ideas for a geometric model of branching arteries
in the brain. This is consistent with the notion of a map from a reference domain and the idea
of eventually applying the same approach to morphing transformations for patient-specific data
from medical imaging. This also allows us to capitalize on the mesh generation applied in the
previous symmetric pipe studies and explore related mesh quality treatments to mitigate mesh errors
associated with morphing. These issues are discussed in more detail in the following paragraphs.
To motivate the model studies following, consider Figure 8 of patient brain artery scan data in the
public domain (from http://www.neuropat.dote.hu/table/angio.htm). The figure displays branching
artery configurations that may be a serious risk site for stroke. The left view shows the darker main
branching structure of the arteries (BA-PCA) that supply a network of smaller arteries in the system.
The right image shows that the upper branches are very out of plane. A larger inflow artery VA is
also evident at the bottom of each view and a secondary branching artery (PICA) on the lower left
of the right figure shows a branching geometry and again an out-of-plane character similar to that
seen in BA-PCA. There is also geometric variation along the branches. These images of branching
configurations were used as a guide in the geometric and flow modeling studies that follow. To
that extent these studies are generic and designed to lead to a better understanding of qualitative
effects due to out-of-plane deformation and branch constrictions. They are also preliminary insofar
as patient-specific goals are concerned and we indicate how they may be extended to apply to
individual data.

Morphing transformations

The previous symmetric uniform branched pipe configuration may be applied as a reference domain
for geometric morphing to a desired tube or artery geometry model. In this reference branched
pipe geometry, the symmetry axes of all three branches lie in the xz-plane, and the inflow branch
symmetry axis follows the z-coordinate axis. Once an appropriate morphing transformation is
constructed, it can be applied similarly to transform a mesh defined on the reference domain.
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(a) (b)

Figure 9. Domains and boundary conditions for the blood flow simulation: (a) without
constrictions and (b) with constrictions.

This is the basic approach developed here for the out-of-plane artery branch model. The two
representative examples of 3D out-of-plane meshed geometries shown in Figure 9 were obtained
by applying a morphing transformation to the coplanar geometry and the associated hexahedral
mesh used in the previous pipe flow studies. For each pipe branch, the deformation function is
defined with the aim of modeling 3D branching arteries that may also have local constrictions or
dilations. (The mapped domain and mesh on the left has uniform branches and that on the right
has constrictions and dilations as discussed next.)

The morphing transformation leading to this curved 3D branch geometry is defined by two sets
of deformation functions: The first transformation F0 is used for morphing all three pipe branches
from the reference configuration to create the underlying out-of-plane geometry (Figure 9(a)),
and the second, Fc, is used for creating local constrictions and dilations (Figure 9(b)). The idea
of using two transformations is representative of the general modeling workflow, where first
transformation (e.g. F0) is introduced to capture main geometric features and results in a generic
(or ‘healthy’) model of the arteries. It is required only once, and the resulting geometry becomes
a new ‘reference’ domain. The second transformation (e.g. Fc) is then designed to reproduce
patient-specific variations from this generic model.

More specifically, in our case the out-of-plane deformation function for the inflow branch

F0 =

⎧⎪⎨
⎪⎩
x= x

y= R−(R− y)cos(Rr)

z=r0+(R− y)sin(Rr)

if r��R/2

=

⎧⎪⎨
⎪⎩
x= x

y= R+r−�R/2

z=r0+R− y

otherwise

is chosen so that the symmetry axis of the branch (r+r0, is the distance from the branch intersection
point (origin) along this axis, where r0= const, 0�r�rmax) would follow a quarter of a circle with
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radius R=1.5≈rmax/�, rmax=5 in the yz-plane and then continue in a straight segment parallel
to the y-axis. The constriction deformation function for the inflow branch

Fc=

⎧⎪⎨
⎪⎩
x=�x

y=�y

z= z

where �=1−0.1r sin

(
3�r

10

)

is designed for a flow to start from the widest part of the branch, then go through a constric-
tion, which then widens into the branch intersection region. The superposition Fc◦F0 yields the
morphing function for the inflow branch with constrictions as shown here. Similarly, the morphing
function for each of the outflow branches is designed so that, starting from the branch intersection
point, the axes of symmetry of the branches follow linked arcs of two circles in the (original)
xz-plane and end in short straight segments parallel to the z-axis, as described by

F0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x= R+0.25−(3−1/2x−√
3/2z)cos

(
r+�

3

)

y= y

z=√
3(R+0.25)−1/

√
3

−(3−1/2x−√
3/2z)sin

(
r+�

3

)
if r��/2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x= R+0.25+(9/�−1+1/2x+√
3/2z)sin

(
r−�/2

9/�−1

)

y= y

z=√
3(R+0.25)−1/

√
3−2−9/�

+(9/�−1+1/2x+√
3/2z)cos

(
r−�/2

9/�−1

)
if �/2�r�4.5

=

⎧⎪⎪⎨
⎪⎪⎩

x= R+0.25+9/�−1+1/2x+√
3/2z

y= y

z=√
3(R+0.25)−1/

√
3−2−9/�−r+4.5

otherwise (22)

The two outflow branches were morphed symmetrically with respect to the yz-plane and a
higher-frequency constriction transformation with coefficient

�=1+0.4sin

(
7�r

10

)

is used in order to introduce two constricted and two dilated sections in each branch.

Remark
Clearly, one can introduce other morphing functions from the planar reference domain to approxi-
mate a given target configuration defined by patient-specific data or by an ‘average healthy branch
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configuration.’ The latter may then become the new ‘reference’ domain and perturbation trans-
formations away from this normal configuration introduced to study the effect of patient-specific
pathology efficiently.

In the context of a particular patient-specific case, the mathematical framework for geometry
morphing introduced in this section can be viewed in the following way. In general, deformation
F0 describes transformation of an object skeleton. In our example, the geometry of three branching
straight segments (symmetry axes of pipes) should be mapped to a target patient-specific geometry
skeleton. The target skeleton can be obtained from a medical image with the help of skeleton-based
extraction methods (e.g. [25]) or deformable models (e.g. [26]) which yield approximation by
splines. After skeletons are matched, deformation Fc defines transformation of the cylindrical pipe
boundaries. Patient-specific boundary data are again obtained from an image, for example, using
pattern-recognition [27] or an edge-detection algorithm which will result in piecewise polynomial
or spline representation. Therefore, both mapping functions F0 and Fc can be presented as piecewise
analytical functions even for the patient-specific application. Moreover, radial symmetry of the
boundary with respect to the medial axis is not a requirement of the general approach. Our use
of the mesh improvement technique described in the following section eliminates the need for
determining the volumetric transformation of the initial template geometry to a patient-specific
case. Only the patient-specific boundary geometry is required as input.

Mapped mesh improvement

Viable non-folded meshes were generated in the original planar configuration as described earlier
in this paper. The morphing transformations above are designed to map from the reference surface
to the target surface. Similarly, they may provide a one-to-one correspondence between every point
in the reference coplanar geometry and the new 3D branched geometry. Hence, when applied to
every node in the reference mesh, they do not necessarily introduce element folding. However,
there is obviously an effect on cell size and shape especially for cells near the branch intersection
area and where mapping deformations are significant; hence, mesh quality will vary and will almost
certainly deteriorate relative to the original mesh in the reference domain. (Here, a valid reference
mesh of well-shaped cells is assumed.) To ameliorate cell quality degradation, mesh morphing
may be followed by a corrective mesh optimization stage that is designed to improve the quality
of cells that have been excessively deformed in shape under the map. This adds an additional step
to the resulting algorithm.

The main steps in the composite algorithm then are as follows: (1) generate an unstructured 3D
mesh in the reference domain; (2) define the transformations relating the target surface geometry
to the reference surface geometry and morph the mesh to the target; (3) untangle and optimize the
mesh to improve quality; (4) simulate the flow using the resulting mesh; and (5) use feedback and
error indicators based on the computed solution to include error control in the optimization metric
or adaptively refine the mesh locally.

Remark
For algorithm and application studies combining the mesh optimization approach with adaptive
refinement see [28, 29].

Mesh improvement is generally applicable to the entire mesh but logically more important in
the branching and local constriction/dilation areas. The main purpose here is to ensure that the
overall mesh quality is good in a global optimization sense as described next. More specifically,
the mesh smoothing framework in [15, 30, 31] is applied here and is based on controlling local cell

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:531–553
DOI: 10.1002/fld



546 W. L. BARTH, L. V. BRANETS AND G. F. CAREY

shape distortion and dilation away from an ideal reference cell shape (a cube of average volume for
hexahedral cells in the present work). To accomplish this, corresponding local distortion measures
are introduced and combined to define a weighted composite local distortion and dilation metric
E�(S) where S is the local Jacobian matrix of the map between the reference element �̂c and
a physical cell in the morphed domain. The local mesh metric is defined in n-dimensions for a
representative cell as a convex linear combination of a shape distortion metric 	(S) and a dilation
metric �(S)

E�(S)=(1−�)	(S)+��(S), 0��<1 (23)

with

	(S)=
(
(1/n) tr(STS)

)n/2

det S
, �(S)= 1

2

(
1

det S
+ det S

1

)
(24)

where parameter � can be adjusted to emphasize distortion or dilation control and tr denotes the
trace.

Integral contributions from the cells are accumulated to yield a global mesh distortion functional
I. This distortion functional achieves a minimum on an optimal (high-quality) mesh. That is, the
mesh smoothing algorithm is formulated as a variational minimization problem

minI=∑
c

∫
�̂c

E�(S)dn=
∫

�̂
E�(S)dn (25)

where �̂=∪c�̂c. This minimization problem is solved here by applying an iterative descent
optimization algorithm to a discretized form of functional (25).

The local shape and distortion cell metrics above achieve their minimum value 1 when S= I ;
that is, when reference and physical cells are identical. Similarly, the metrics approach infinity
when a physical cell approaches degeneracy (det S→0). The same behavior is preserved by the
global distortion functional I and, under correct numerical approximation rules, by the discretized
functional. Thus, an important property of this algorithm is that degenerate cells cannot be produced
from valid cells during mesh smoothing (minimization of I). Also, the functional can be modified
to perform mesh untangling (i.e. mesh rectification starting from an invalid mesh with inverted
elements) as well as smoothing.

The results of smoothing here are qualitatively similar to the improvement observed for hexa-
hedral meshes under coplanar deformations where the lower branch angle is significantly reduced
below 120◦ [15, 32]. For the present mesh with 9720 hexahedra, one iteration of the optimization
smoothing procedure took about 15 s (on a PC with 2.2GHz AMD processor), and about 100 s
total time is required for mesh smoothing.

To test robustness under less favorable mapping conditions, the morphing transformations were
next applied only to the boundaries of the original pipe mesh. Under this action, the interior mesh
nodes are not mapped; hence, the mapped mesh is highly distorted with most elements that are
adjacent to a boundary very elongated and many elements inverted. The untangling/smoothing
algorithm developed in [30, 31] is then applied to generate a high-quality mesh inside the morphed
boundaries. This extreme case required 30 iterations of the optimization algorithm and about 7min
total CPU time on the same PC. This algorithm produced essentially the same mesh as obtained
previously from the more favorable fully mapped initial mesh. Hence, at moderate additional cost,
this second approach allows more flexibility and expands the potential for modeling the geometry
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of real arteries from individual patient-specific data (where the boundary information is extracted
from the image).

Remark
Note that this approach is also useful for dynamic simulations of fluid–structure interaction
involving moving and naturally deforming walls or other flexible boundary surfaces or interfaces,
as the morphing/smoothing/untangling procedure can also be performed fast in this case with
smoothing requiring only 1 or 2 iterations.

Artery model flow simulations

The flow is computed with the improved meshes discussed above at Re=10,20, and 50 (based,
as remarked earlier for these apparent viscosity models, on the given pressure difference and �0)
and with �∞/�0=1,0.1,0.03,0.01.

Figures 10–12 show the plots of viscous stress on the boundary and of interior flow streamlines,
colored by pressure and velocity magnitude as appropriate, for the case Re=20 with branches
without constrictions and at all stated choices of viscosity ratios. The color-scale range is defined by
the maximum and minimum values over all four figures in order to facilitate comparison between
the figures. The slow flow case, Re=10, does not exhibit significant changes with the change of
�∞/�0, and at Re=50 vortices develop even for �∞/�0 close to 1, i.e. the Newtonian case. From
these figures it is seen that

1. The largest boundary stresses occur at the non-smooth joints where the inflow branch meets
the two other branches, and on the inside curve of the inflow branch. The area near the joint
for the two outflow branches has very low stress in the case of a Newtonian fluid, but the
wall stress in this region grows significantly with reduction of �∞/�0 (that is, for progressive
shear thinning).

2. Pressure profiles are almost the same for all cases; however, pressure at the joint of the two
outflow branches grows as �∞/�0 is reduced. That is, regions of higher pressure expand in
the outflow direction.

3. The velocity of the fluid increases significantly with the non-linearity due to the apparent
viscosity, and the velocity profile displays sharper gradients due to associated shear thinning.
At �∞/�0=0.03 a vortex starts to form near the joint for the outflow branches, and the
vortex formation becomes more evident at �∞/�0=0.01.

(a) (b) (c)

Figure 10. Flow at Re=20, �∞/�0=0.1: (a) boundary stress; (b) pressure; and (c) velocity magnitude.
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(a) (b) (c)

Figure 11. Flow at Re=20, �∞/�0=0.03: (a) boundary stress; (b) pressure; and (c) velocity magnitude.

(a) (b) (c)

Figure 12. Flow at Re=20, �∞/�0=0.01: (a) boundary stress; (b) pressure; and (c) velocity magnitude.

Figure 13 shows corresponding plots of boundary stress for various values of �∞/�0 and flow at
Re=20 with local constrictions. The same trends in flow behavior with the change of �∞/�0 can
be observed for this choice of geometry. However, the maximum boundary stress now occurs at the
constriction in the inflow branch for the Newtonian flow, but is reduced for the non-Newtonian fluid,
with implications concerning the effect of blood thinners on flow and wall shear near constrictions.
Also the vortices do not form in this case. Figure 14 shows plots of stress, pressure, and velocity
for the flow at Re=20, �∞/�0=0.01. The color scales here are the same as in the previous figures.
Comparing this result with that for flow under the same conditions in non-constricted branches
(Figure 12), observe that constrictions reduce the non-linear effect of viscosity. That is, plots of
velocity magnitude show a slower flow in the constricted injection branch with no vortices forming
at the entry to the outflow branches. In addition, the boundary stress in this region is significantly
lower for the constricted branch geometry.

Figure 15 shows a close-up view of the flow structure downstream of the bifurcation in the
artery model with constrictions. The vortex structure is more apparent in this rendering and has
a clearly different nature than that in the flat geometry as shown previously in Figure 7. In the
artery model case, the upstream bend before the bifurcation causes the flow to accelerate as it
rises. This acceleration causes the flow to pass by the bifurcation and follow the downstream
wall down and away from the stagnation point creating a single vortex that fills the entire artery
branch. In the flat geometry, the symmetry about the plane normal to the view direction allows the
strong centerline flow upstream of the bifurcation to impinge on the downstream walls and split
into symmetric upper and lower halves where two vortices fill the downstream part of the tube.
Additionally, in the case of a drug delivery system and in the absence of diffusion, these ribbons
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(a) (b) (c)

Figure 13. Boundary stress for flow in constricted branches at Re=20: (a) �∞/�0=1;
(b) �∞/�0=0.03; and (c) �∞/�0=0.01.

(a) (b) (c)

Figure 14. Flow in constricted branches at Re=20, �∞/�0=0.01: (a) boundary
stress; (b) pressure; and (c) velocity magnitude.

Figure 15. Stream ribbons illustrate flow in the brain artery model at Re=20
and �∞/�0=0.03, Powell–Eyring fluid.
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give a ‘first approximation advection model’ of this additional transport process. The extension to
include transient flow and diffusion effects is straightforward with our flow and transport simulation
framework MGF [13] as the framework can accommodate up to 63 coupled transport PDEs in the
system and provides a parallel HPC capability for easily adding further equations. Other effects
such as chemical absorption on the walls, duration of delivery, and boundary conditions then
become issues of interest. Such an extension is beyond the scope of this study and is the subject
of continuing work.

Finally, in order to characterize the behavior of periodic blood flow in arteries better, transient
‘pumping’ flow simulations are performed. In these computations, instead of a fixed pressure
gradient between inflow and outflow boundaries ∇ p=−1 (i.e. fixed normal traction on the inflow
boundary), an oscillating pressure gradient ∇ p=−0.5(1+sin t) is specified. Simulations of peri-
odic pumping flow at Re=20 and �∞/�0=0.01 yield similar results for both branch geometries
(with and without constrictions). Representative plots of velocity magnitude at different times
during periodic flow in the branched geometry without constrictions are shown in Figure 16. Since
the flow has no time to fully develop under this specified transient pressure gradient and the
periodic average pressure gradient is smaller than the value in the fixed gradient case, vortices do

(a) (b)

(d)(c)

Figure 16. Pumping flow at Re=20, �∞/�0=0.01: velocity magnitude at different times:
(a) t=�/4; (b) t=3�/4; (c) t=5�/4; and (d) t=7�/4.
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not form in this example. (For example, compare with Figure 12, where vortices form at the same
flow conditions but fixed pressure gradient.) Also, the maximum velocity magnitude, as well as
the whole velocity profile, is similar to that of a Newtonian flow at Re=20 and fixed pressure
gradient. Thus, in this test of a pumping flow the effects of the non-linear viscosity are not as
significant.

CONCLUSIONS

In this study, our recent research work involving pressure-driven flow formulations, generalized
viscosity models, and mesh improvement algorithms has been further developed and extended to
study shear-thinning and wall stress effects in branching pipe and artery models. The resulting
methodology is implemented and applied in a parallel non-linear viscous flow solver. The Powell–
Eyring fluid model serves as a representative example of the generalized viscosity fluid class
considered here. Numerical results for a range of viscosity parameters in the coplanar pipe studies
illustrate that two recirculation zones begin to appear as the viscosity ratio is reduced and that the
flow is simultaneously pushed away from the stagnation point in the branching zone. The flow
behavior in this region is seen to be quite complex at these low ratios of viscosity parameters. More
pronounced local stresses are also observed near the stagnation point in this case. In the parallel
simulations, medial axis partitioning is shown to be very effective for this type of geometry with
little communication overhead.

The geometry of more complex industrial branching configurations or artery branch models
including local constrictions or dilations is approximated by introducing a morphing transformation
that maps from a reference configuration into the design geometry. This morphing transformation
can be applied simultaneously to the interior mesh or the mesh can be untangled as part of the subse-
quent mesh optimization strategy. Both work well here with the former slightly faster. However, the
second test of the numerical scheme indicates the robustness of the mesh improvement algorithm
and therefore the general suitability for maps that involve patient-specific data. This applies not
only to this problem class but also to other applications. For example, in related work [15] this
mesh quality metric is used to identify and improve ill-shaped cells in a patient-specific mesh for
brain tumor surgical planning simulations [33]. The planar branching pipe configuration and mesh
are the reference domain and mesh in this work, but the morphing transformation can be applied
in the same manner twice—once as used here to an intermediate ‘normal’ artery branch model
for qualitative baseline simulations and then to a ‘nearby’ model from patient-specific data for
comparative simulations.

Numerical studies with the mapped artery model exhibit similar general features to those in the
coplanar pipe study but some effects are more pronounced due to deformation of the geometry
in the branching region in particular. Local constrictions and dilation in the branched geometry
model also were studied with a view to the influence of such a local geometry variation on artery
wall stress. In the case of a local constriction, the non-linear effects of the viscosity model are
mitigated, the velocity is reduced and there is no vortex formation at the entry to the outflow
branches for the case studied. Some exploratory simulations were made for the case of periodic
‘pumping’ flow with an oscillatory applied pressure gradient that has a lower mean value (0.5) than
the previous case with fixed unit pressure gradient. This flow solution has a more benign behavior
than the previous fixed case as one would anticipate. More numerical and parametric studies are
needed to explore the range of behaviors in the branching subregion for this periodic transient case.
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The geometry map and mesh improvement strategy also appear suitable for extension to future
applications involving moving and deforming boundaries: For example, in an explicit geometry
update strategy, the geometry change computed from the prior fluid–structure analysis time step
can be used to provide the data for updating the morphing map; the mesh improvement algorithm
then does a very fast ‘remap’ of the mesh ensuring good cell quality. The solution field is projected
to the new mesh and the solution step continues. Such schemes can be utilized efficiently for
specified large deformations of the branches (due to breathing or impact to torso and head arteries)
or to smaller changes in an artery boundary due to pulsatile flow.

The methodology, morphing, and mesh improvement algorithms are essentially independent of
the application cell choice; hence, one could equally apply this to other engineering and biomedical
applications using, for instance, tetrahedral cells instead of hexahedra. An interesting feature of the
present approach is that the 3D mesh in a reference domain can be generated once and archived to be
morphed into different specific applications and optimized as described here. Other configurations
can be similarly archived and linked to form a larger more complex network. For instance, one
could connect numerous curved and branching ‘component segments’ to integrate them into a more
global network model of a complex system. The morphing and mesh generation strategies would
be applied at the local component level ensuring compatibility across the ‘interfaces’ between
components. Of course, such a multicomponent linked system would be correspondingly more
computationally intensive and the parallel algorithm and specialized preconditioner applied here
would be essential to timely predictive simulation. In this respect, the present methodology and
software are starting points for more specific studies and broader studies that could be made with
medical researchers conducting experiments or evaluating treatments. The brain arteries would
appear to provide a greater challenge to such experimental studies but the qualitative results shown
here and the ability to study the effects of blood thinners may be more tractable. Studies of
prosthetic device performance would also be more amenable to comparison.
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